SELF~-CONSISTENT BUNCHES OF OSCILLATING
HEAVY PARTICLES IN AN ACCELERATOR

A, D. Vliasov

The possibility of the existence of self-consistent spheroidal bunches having a constant
density which consists of heavy particles or bodies is demonstrated. In a projection onto
the transverse plane the particles describe circles or ellipses, while along the spheroid
axis the particles oscillate sinusoidally. It is possible for an infinite set of particle
distributions o appear with respect to the half-axes of the transverse ellipses and with
respect to the amplitudes of the longitudinal oscillations.

The problem is considered of the stationary uniform filling of an ellipsoid of rotation (spheroid) with
particles which perform sinusoidal oscillations

z=A4.sin{Qt+08), y=4,sm(QI4+0) z=Asin@p+08) {1}
having stipulated angular frequencies Qg =0y =0, and &, in a projection onto the spheroid axis.

This problem arose in considering bunches of charged elementary particles (protons) in a linear ac-
celerator [1]. In a spheroidal proton bunch its intrinsic electric field summed with the accelerating and
focusing fields of the accelerator has components which are proportional to identical coordinates and are
independent of other coordinates:

E,=—Kg D=—Ky E=—Kz (2}

For self-consistency of the bunch it is necessary that the particles which perform oscillations of the
form (1) in the field (2) be so distributed with respect to the amplitudes and phases of the oscillations A,
6 (with respect to the integrals of motion) that at any instant they fill the spheroid with a stipulated constant
density, since only under this condition will the field have the form (2).

Equations (2) likewise express the gravitational field inside a homogeneous spheroidal bunch of heavy
particles or bodies. Under these conditions

Q2= K_=4nsGM,, Q2=K =4nsGM
r r z F4 z

where G is the gravitational constant; o is the density of the bunch; My and M, are coefficients which de-
pend on the shape of the spheroid (2My + M, =1}. Thus, the specific physics content of the problem of self-
consistent bunches may be different. These may be either clouds of cosmic dust, clusters of stars, or
bunches of protons in an accelerator.

1t is assumed that the relativistic effects, fluctuations of the field (2), and collisions and exchange
of energy between particles may be neglected. The problem of the stability of the bunches is not consid-
ered. Heavy particles, of course, may have identical masses.

A spheroid having the half-axes ayx =ay =ay and a, can be described by the equation

3 ”5?';:5“'—“‘1 (3)
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Let us isolate particles having a cerfain fixed amplitude A, of the longitudinal oscillations from the
bunch. These particles are confined in a cylinder of length 2A, and radius ay. vi—(Az/a,)? inscribed in the
spheroid (3). The fraction of the period of the longitudinal oscillations T, =27/Q, during which the particle
is situated in the interval from z to z +dg is

2z 2dz . dz
Tdefdl ~ T QA cs@i+0) nyds_2

In view of the stationarity of the bunch the particle distribution over the phases 6, must be uniform.
Then the particle density having a given amplitude Az can be expressed with allowance for axial symmetry
of the bunch in the form
Nir,4) R
YA =VEER @

where N is a certain function of Ay and of the radial coordinate r.

The total particle density ¢=const at the point r, z can be expressed by an integral of the partial den-
sities (4) over all the amplitudes A, which are not less than z and do not cause the particle to depart be-
yond the limits of the spheroid for a given r:

1 Ao N, A)dA S—
[ At 5 z o 1—r2 2
¢ n § VZ———?:;" s 4 =0, V la, (5}
From this integral equation, which can easily be reduced to the Abel equation, we find
N(rA)= 204, = ca, s 4, =a, ][1———_44—2‘77.&:5 (6)
Vel —r/af)—42  ntYAE—1r C=2n%a,[a,

The initial three~dimensional problem has now been reduced to a two-dimensional problem, It is
required to find the distribution of the particles with respect to the amplitudes and phases of the transverse
oscillations which has a given amplitude Ay and for which the dependence of particle density on the radial
coordinate r can be described by the function (6). Let us consider solutions of this problem.

The First Solution, It consists simply in the motion of particles along circles r=R in the projection
onto the transverse plane. Such motion holds for the conditions that for each particle Ay =Ay =R, lo x—-eyl =
7/2, and the particles are distributed uniformly with respect to the oscillation phases 6y (and consequently
with respect to Qy). Of course, all of the particles rotate at an identical frequency §2;. Under these con-
ditions the particle deasity can be expressed by the function N given in (6) as a function of the amplitudes
(rotation radii) r =R, while the density of the particle distribution with respect to the radii r=R is expressed
by the function 27 rN.

However, other less trivial distributions are likewise possible. The transverse direction of the par-
ticle trajectory in accordance with (1) is an ellipse with its center X =y =0 and the half-axes

ab— (Y AT T A ¥ 24,4, 5[0, — 0,1 & J A7 F A7 F 24, A, 5[0, ~ 0,1 )/2 )
in the general case, the major axis of the ellipse making an angle
1 24,4
=5 arc g [—Af;—;;{cos(exney)]

with the x axis,

Instead of the particle distribution with respect to the amplitudes and phases Ag, Ay, 0%, By it is more
convenient to seek the distribution with respect to the parameters a, b, and n of the ellipses and withrespect
to the phases of motion along the ellipses. In view of the axial symmetry and stationarity of the bunch the
particle distribution with respect to the orientation angles 5 of the ellipses and the phases of the motion
along the ellipses must be uniform. The fraction Ty =21/ of the period of motion along the ellipse during
which the particle is in a cylindrical layer extending from r to r+dr is equal to

4dr " 2rdr
Tdrldt ™ g Vi@d— %) (rF — b5

in accordance with Egs. (1) and (7).
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The distribution density of particles having given « and b is 27r times as small and can be expressed
in the form
M(a,b A)
=V @) (8)

Here M is the desired distribution function of the particles with respect to the parameters «, b, A,.
The distribution density of particles having a given A, (6) for a given r is expressed by the integral of the
partial densities {8) over all b which do not exceed r and over all ¢ which are not less than r and not larger
than Ap:

4
" M (a,b, 4,)db c4,
. dS

Y Vie—m{— b‘z) Y AT {9)
We shall seek the function M in the form of the product of two functions:

1
w

M (a, b, A7) = f(a, 42) ¢ (b, 4;)

The integral equation (9) then decomposes into two equations:

.
@Ay
§*—~“w_be =®na) (10)
A§ fla,4)da c4,
Va—r  O(rd)yAr—r 1y

If the function ¢ is specified, then we find & from (10), and it remains for us to find f from the inte~-
gral equation (11). However, if we specify f, then we find & from (11) and it will be necessary to find ¢ from
Eq. (10). Of course, one may also specify the function &, and then it remains for us to find ¢ and ¥ from
the integral equations (10) and (11). Reducing each of them to an Abel equation, we obtain

bA)—.:%. (12)

d §®(r,A yrdr
r) g VE_2

4

€4 T a a ¢ Zrdr ]
LAY = z {2 —1)— =
fo ) n Lr@ (4, 4) ( 4, ) de S T A) YA (rﬁ—a*;} (13)
Equation (13) includes a é-function. The functions f, ¢, & 1 must be integrable and nonnegative, the
relationships
B {4y, A0, Bla, A)E0, Db, 4)F oo
being valid.

The distribution M=f¢ which has been found satisfies the normalization

oy
S dA,
@

The mechanical (or magnetic) moments of the bunches depend on the distribution of the particles with
respect to their directions of rotation about the axis and their proper angular momenta.

&

a 4 .
aSM(a, b A,)db= % natap (14)
i3

DOy

Since one of the functions f, ¢, & may be chosen arbitrarily, the problem has an infinite set of solu-
tions. In addition to the first solution presented above (r=R), one can also obtain other solutions from Egs.
(10)-(13), as well as families of solutions. Let us present examples.

The Second Solution. Assume ¢=1. From Egs. (10) and (13) we find

4nca, A
1 a
(D::“TZ-—, M= f—.”’:‘“ rﬁ(r——i)

A T
i.e., a=Ay. The first and second solutions were obtained in [1].
The Third Solution. Assume f=a (Ar*~a%)~%, 0 <e<1. From Egs. (11) and (12) we obtain
1
c4

dv
@ = i L =\
e (4,2 — e e § (1 —mF
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_4noa, A 4% g (1—2)b § dv
P(e)a, (4,2—a%)* A2 (4,2 — b2)'fee PR T

a
o= VAr2 — &
For £=0, 1/, we obtain ¥ (€) =1, n/2, and the expression for M is simplified.

The Fourth Solution. Assume &=r2, n>0. From (12) we find ¢=X (n)b™. For even n the integrals
in (12) and (13) can be calculated in finite form. Thus, for $=12 we have

4B yaxs 8nca, AP 4 q a
o= M= == [ (a -y
z r r

Linear combinations of particular solutions which satisfy the normalization (14) and are not negative
are likewise solutions of the problem.

Thus, we have demonstrated the possibility that self-consistent bunches of oscillating heavy particles
exist. The bunches have the form of constant-density spheroids. In projection onto the transverse plane
the particles describe circles or ellipses, while they perform sinusoidal oscillations in the direction of the
spheroid axis. It is possible to have an infinite set of different particle distributions with respect to the
semiaxes of the transverse ellipses and with respect to the amplitudes of the longitudinal oscillations.
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