
S E L F - C O N S I S T E N T  B U N C H E S  OF O S C I L L A T I N G  

H E A V Y  P A R T I C L E S  IN AN A C C E L E R A T O R  

A. D. V l a s o v  

The possibility of the existence of self-consistent  spheroidal bunches having a constant 
density which consists of heavy particles or bodies is demonstrated. In a projection onto 
the t ransverse  plane the particles describe circles  or ellipses, while along the spheroid 
axis the particles oscillate sinusoidally. It is possible for an infinite set of particle 
distributions to appear with respect  to the half-axes of the t ransverse  ellipses and with 
respect  to the amplitudes of the longitudinal oscillations. 

The problem is considered of the stationary uniform filling of an ellipsoid of rotation (spheroid)with 
particles which perform sinusoidal oscillations 

z = A x sin (~r  t + 0x), y = Ay sin (~r  t + 0y), z -~ Azsin (~zt + 0z) (1)  

having stipulated angular frequencies ~x =~2y =~2 r and ~2z~ in a projection onto the spheroid axis. 

This problem arose in considering bunches of charged elementary particles (protons) in a l inear ac- 
celerator  [1]. In a spheroidal proton bunch its intrinsic electr ic  field summed with the accelerating and 
focusing fields of the accelerator  has components which are  proportional to identical coordinates and are 
independent of other coordinates: 

E x = - - g r z ,  D ~ = - - K r v ,  Z = - - K z  (2) 

For self-consistency of the bunch it is necessary that the particles which perform oscillations of the 
form (1) in the field (2) be so distributed with respect  to the amplitudes and phases of the oscillations A, 
0 (with respect  to the integrals of motion) that at any- instant they fill the spheroid with a stipulated constant 
density, since only under this condition will the field have the form (2). 

Equations (2) likewise express the gravitational field inside a homogeneous spheroidal bunch of heavy 
particles or bodies. Under these conditions 

~r~ ~- K r ~- 4n~GMr, D~z~ = K z = 4~zGM z 

where G is the gravitational constant; cr is the density of the bunch; Mr and M z are  coefficients which de- 
pend on the shape of the spheroid (2Mr +M z =1). Thus, the specific physics content of the problem of self- 
consistent bunches may be different. These may be either clouds of cosmic dust, clusters of s tars ,  or 
bunches of protons in an accelerator .  

It is assumed that the relat ivist ic effects, fluctuations of the field (2), and collisions and exchange 
of energy between particles may be neglected. The problem of the stability of the bunches is not consid- 
ered.  Heavy part icles ,  of course,  may have identical masses .  

A spheroid having the half-axes a x =a T =a r and a z can be described by the equation 

x 2 + y~ z ~ 
~2 b- -~  = i (3) 
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Let  us i so la te  pa r t i c l e s  having a ce r ta in  f ixed ampli tude A z of the longitudinal osci l lat ions f rom the 
bunch. These  pa r t i c l e s  a r e  confined in a cyl inder  of length 2A z and radius  a r ~ / i - ( A z / a z  )2 insc r ibed  in the 
sphero id  (3). The f rac t ion  of the per iod  of the longitudinal osc i l la t ions  Tz =2V/s during which the par t ic le  
is s i tua ted  in the in te rva l  f r o m  z to z + dz is 

2dz 2dz dz 
T zdZ / dt 

In view of the s ta t ionar i ty  of the bunch the par t i c le  distr ibution over  the phases  0z mus t  be uni form.  
Then the pa r t i c l e  density having a given ampli tude A z can be e x p r e s s e d  with al lowance for  axial  s y m m e t r y  
of the bunch in the f o r m  

N (r, Az) 
(r = V x~ + y~) (4) ]/AzU --z  ~ 

where  N is  a ce r ta in  function of Az and of the rad ia l  coordinate  r .  

The total  pa r t i c le  density a = c o n s t  a t  the point r ,  z can be e x p r e s s e d  by an in tegra l  of the pa r t i a l  den-  
s i t i es  (4) ove r  al l  the ampl i tudes  A z which a r e  not l e s s  than z and do not cause  the par t i c le  to depar t  be -  
yond the l imi t s  of the sphero id  for  a given r :  

A 
i z~rn N(r,  Az) dAz 

F r o m  this in tegral  equation, which can eas i ly  be reduced  to the Abel equation, we find 

2ZAz --  CAz Ar-'~ar ~ i - -AzU /az~ (6)  
N (,,  A,:) - "1 / a:~ ( i  - r~/a,~) --Az~ ~ } f ~  ' C ffi 2 ~ z a ,  / % 

The ini t ial  t h r ee -d imens iona l  p rob l em  has now been reduced  to a two-dimens iona l  p rob lem.  I t  is 
r equ i r ed  to find the dis tr ibut ion of the pa r t i c l e s  with r e s p e c t  to the ampl i tudes  and phases  of the t r a n s v e r s e  
osc i l la t ions  which has  a given ampli tude A z and for  which the dependence of par t ic le  density on the r ad ia l  
coordinate  r can be desc r ibed  by the function (6). Let  us cons ider  solut ions of this p rob lem.  

The F i r s t  Solution. It  cons is t s  s imply  in the motion of pa r t i c l e s  along c i r c l e s  r =R in the project ion 
onto the t r a n s v e r s e  plane.  Such motion holds for  the conditions that for  each  par t i c le  A x =Ay =R, [ 0 x - 0 y [  = 
1r/2, and the pa r t i c l e s  a r e  d is t r ibuted  uni formly  with r e s p e c t  to the osci l la t ion phases  0 x (and consequently 
with r e s p e c t  to 0y).  Of course ,  a l l  of the pa r t i c l e s  ro ta t e  at an identical  f requency ~2 z. Under these  con-  
ditions the pa r t i c l e  density can be e x p r e s s e d  by the function N given in (6) as a function of the ampl i tudes  
( rota t ion radii)  r =R, while the density of the pa r t i c l e  distr ibution with r e s p e c t  to the rad i i  r =R is e x p r e s s e d  
by the function 21r rN.  

However ,  o ther  l e s s  t r iv ia l  d is t r ibut ions  a r e  l ikewise  poss ib le .  The t r a n s v e r s e  di rect ion of the p a r -  
t iele t r a j e c t o r y  in accordance  with (1) is  an e l l ipse  with i ts  cen te r  x =y = 0 and the ha l f - axes  

(7) 

in the gene ra l  case ,  the m a j o r  axis  of the e l l ipse  making an angle 

l [ 2AxA~ ] 
~1 = y arc tg  Ax~ - -  Au~ cos (0~ - -  %) 

with the x axis .  

Ins tead  of the pa r t i c l e  dis t r ibut ion with r e s p e c t  to the ampl i tudes  and phases  Ax, Ay, 0x, ey it is more  
convenient  to seek  the distr ibution with r e s p e c t  to the p a r a m e t e r s  a, b, and V of the e l l ipses  and w i t h r e s p e c t  
to the phases  of mot ion along the e l l ipses .  In view of the axial  s y m m e t r y  and s ta t ionar i ty  of the bunch the 
pa r t i c l e  dis t r ibut ion with r e s p e c t  to the or ienta t ion  angles  ~? of the e l l ipses  and the phases  of the motion 
along the e l l ipses  m u s t  be un i form.  The f rac t ion  T r  = 2v/t2r of the per iod  of mot ion along the e l l ipse  during 
which the par t i c le  is in a cyl indr ica l  l aye r  extending f r o m  r to r + dr is equal to 

4dr 2rdr 
T rdr / d t --  .~ ] /  (a~ --  r~) (r~ --  b2) ' 

in accordance  with Eqs .  (1) and (7). 
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The distr ibution density of pa r t i c l e s  having given a and b is 2vr  t imes  as  smal l  and can be e x p r e s s e d  
in the f o r m  

M (a, b, Az) 
~2 V"(~ _ r ~) (r ~ _ b2) (8) 

Here  M is  the des i r ed  dis t r ibut ion function of the pa r t i c l e s  with r e s p e c t  to the p a r a m e t e r s  a,  b, A z .  
The distr ibution densi ty of pa r t i c l e s  having a given A z (6) for  a given r is e x p r e s s e d  by ~ in tegra l  of the 
pa r t i a l  densi t ies  (8) ove r  all  b which do not exceed  r and over  aU a which a r e  not l e s s  than r and not l a r g e r  
than A r :  

A r r i ! ! M(a,b, Az)db CAz 

We shal l  s eek  the function M in the f o r m  of the product  of two functions: 

M (a, b, Az) ~-- [ (a, Az)  r (b, Az) 

The in tegra l  equation (9) then decomposes  into two equations: 

i~ _ @ (~, A D 
(b, A z ) db 

Ai f (a, Az) da CA z 

(io) 

(ii) 

If  the function go is specif ied,  then we find @ f r o m  (10), and it  r e m a i n s  for  us to f i n d f  f r o m  the in te-  
g r a l  equation (11). However ,  if  we speci fy  f ,  then we find @ f r o m  (11) and it will  be n e c e s s a r y  to find go f r o m  
Eq. (10). Of cou r s e ,  one may  a lso  specify  the function 4i, and then it  r e m a i n s  for  us to find go a n d f  f r o m  
the in tegra l  equations (10) and (11). Reducing each  of t hem to an Abel equation, we obtain 

b 
. . . . .  2 d ~ O (r, A ) rdr 

[ ] 2r'dr 
](a'Az) =--~--[~4(D(zI~A---~ t-~z-- /--~-a ! ~)(r, Az) V(it2__~)(r~ "-~ 

(12) 

(13) 

Equation (13) includes a 5-function.  The functions f ,  go, @ :el mus t  be in tegrable  and nonnegative,  the 
re la t ionsh ips  

~(Ar, Az)=#O, (~(a, Az)~O, @(b, A~)=]=r 

being val id .  

The dis t r ibut ion M =fgo which has been found sa t i s f i es  the normal iza t ion  

a z A r a 
i dAz f dafM(a'b'Az)db~-~-g%~az~ (14) 
o o o 

The mechan ica l  (or magnet ic)  m om en t s  of the bunches depend on the distr ibution of the p a r t i c l e s w i t h  
r e s p e c t  to the i r  d i rec t ions  of ro ta t ion  about the axis  and their  p rope r  angular  momenta .  

Since one of the functions f ,  ~p, @ may be chosen a r b i t r a r i l y ,  the p rob lem has an infinite s e t  of so lu-  
t ions .  In addition to the f i r s t  solution p re sen t ed  above (r =R), one can a lso  obtain other  solut ions f r o m  Eqs .  
(10)-(13), as  well  as  f ami l i e s  of solut ions.  Le t  us p r e s e n t  examples .  

The Second Solution. As s um e  go= 1. F r o m  Eqs .  (10) and (13) we find 

0 - - - ~ - ,  M = ] - -  az Ar 

i .e . ,  a =Ar .  The f i r s t  and second solut ions w e r e  obtained in [11. 

The Th i rd  Solution. A s s u m e  f = a  (Ar2-a2) - s ,  0 s a <  1. F r o m  Eqs. (11) and (12) we obtain 
1 

* (s) (A~ -- r~) I-~ ' ~ (a) = ~ (i -- ~)~ 
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4 r ~ a r A z a [ A r  ~ (l --2e) b i ] 
M -- ~(e) a~ (Ar2__a~) ~ Ar ~ __ b~ "l- d* (Ar~ -- b2/I'-~ (1 + ~)1-~ ' 

a 

B :  

For  e =0, 1/2 we obtain r (e) =1, ~r/2, and the express ion  for M is simplified.  

The Four th  Solution. Assume r  n, n>0 .  F r o m  (12) we find ~=X (n)b n. For  even n the integrals  
in (12) and (13) can be calculated in finite fo rm.  Thus,  for  r  we have 

4b r 4b~ 8a~ar Azb~r i 1 / a  \ ]  
)] 

Linear  combinations of pa r t i cu la r  solutions which sat isfy the normal iza t ion (14) and a re  not negative 
a re  likewise solutions of the problem.  

Thus, we have demonst ra ted  the possibil i ty that se l f -cons is ten t  bunches of oscil lating heavy par t ic les  
exis t .  The bunches have the fo rm of constant-densi ty  spheroids .  In project ion onto the t r ansve r se  plane 
the par t i c les  descr ibe  c i r c l e s  or  e l l ipses ,  while they p e r fo rm  sinusoidal oscil lat ions in the direct ion of the 
spheroid  axis.  It is possible to have an infinite se t  of different  par t ic le  distributions with r e spec t  to the 
semiaxes  of the t r an sve r se  e l l ipses  and with r e sp ec t  to the amplitudes of the longitudinal osci l lat ions.  
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